\qquad Date \qquad Class \qquad
Lesson Practice C

6-7 Volume of Pyramids and Cones

Find the volume of each figure to the nearest tenth of a unit.
1.

2. 38 in .

3.

Find the missing measure to the nearest tenth of a unit.
4. rectangular pyramid:
base length $=15 \mathrm{~m}$
base width $=$?
height $=21 \mathrm{~m}$
volume $=2415 \mathrm{~m}^{3}$
5. triangular pyramid:
base width $=8 \mathrm{~cm}$
base height $=18 \mathrm{~cm}$
height $=$?
volume $=624 \mathrm{~cm}^{3}$
6. A cone has diameter of 24 ft and height of 15 ft . How many times will the volume of the cone fill a cylinder with radius of 18 ft and a height of 25 ft ? Round your answer to the nearest whole number.
7. Find the volume of the figure to the nearest tenth of a unit.

8. Find the volume of the figure to the nearest tenth of a unit.

Practice B

6-7 Volume of Pyramids and Cones

Find the volume of each figure to the nearest tenth of a unit.
1.
$324 \mathrm{ft}^{3}$
2.

$2913.3 \mathrm{~cm}^{3}$
5.

$1728 \mathrm{ft}^{3}$

6.

7. The base of a regular pyramid has an area of $28 \mathrm{in}^{2}$. The height of the pyramid is 15 in . Find the volume.
$140 \mathrm{in}^{3}$
8. The radius of a cone is 19.4 cm and its height is 24 cm . Find the volume of the cone to the nearest tenth
$9454.2 \mathrm{~cm}^{3}$
9. Find the volume of a rectangular pyramid if the height is 13 m and the base sides are 12 m and 15 m .
$780 \mathrm{~m}^{3}$
10. A funnel has a diameter of 9 in . and is 16 in . deep. What is the volume of the funnel to the nearest tenth of a unit?
$339.1 \mathrm{in}^{3}$
11. A square pyramid has a height 18 cm and a base that measures 12 cm on each side. Explain whether tripling the height would triple the volume of the pyramid. Possible answer: The volume of the original pyramid is $864 \mathrm{~cm}^{3}$. The volume of the new pyramid is $2592 \mathrm{~cm}^{3}$. Therefore, if the height of the pyramid were tripled, its volume would be tripled.

Reteach

6-7 Volume of Pyramids and Cones
Pyramid: solid figure named fo

$$
\begin{aligned}
& \text { the shape of its base, } \\
& \text { which is a polygon; } \\
& \text { all other faces are } \\
& \text { triangles }
\end{aligned}
$$

This rectangular pyramid and rectangular prism have congruent bases and congruent heights.
Volume of Pyramid $=\frac{1}{3}$ Volume of Prism

$$
V=\frac{1}{3} B h
$$

Complete to find the volume of each pyramid

1. square pyramid

\qquad

$$
V=\frac{1}{3} B h
$$

$$
V=\frac{1}{3}(\text { area of square }) \times h
$$

$$
V=\frac{1}{3}(\underline{9} \times \underline{9}) \times \underline{7}
$$

$$
V=\frac{1}{3}(\underline{81}) \times \underline{7}
$$

$$
V=189 \mathrm{~cm}^{3}
$$

2. rectangular pyramid

is a rectangle

$$
V=\frac{1}{3} B h
$$

$$
V=\frac{1}{3}(\text { area of rectangle }) \times h
$$

$$
V=\frac{1}{3}(\underline{8} \times \underline{6}) \times \underline{5}
$$

$$
V=\frac{1}{3}(\underline{48}) \times \underline{5}
$$

$V=\underline{80} \mathrm{in}^{3}$

$$
\begin{aligned}
& \text { Coprighty Doby Holt, Pienearat and Winston. } \\
& \text { All }
\end{aligned}
$$

71
Holt Pre-Algebra

Practice C
6-7 Volume of Pyramids and Cones
Find the volume of each figure to the nearest tenth of a unit.
1.

$6191.0 \mathrm{~cm}^{3}$

3.
12,160 in 3
$62,500 \mathrm{~m}^{3}$

Find the missing measure to the nearest tenth of a unit.

4. rectangular pyramid:	5. triangular pyramid:
base length $=15 \mathrm{~m}$	base width $=8 \mathrm{~cm}$
base width $=$?	base height $=18 \mathrm{~cm}$
height $=21 \mathrm{~m}$	height $=?$
volume $=2415 \mathrm{~m}^{3}$	volume $=624 \mathrm{~cm}^{3}$
base width $=23 \mathrm{~m}$	height $=26 \mathrm{~cm}$

6. A cone has diameter of 24 ft and height of 15 ft . How many
times will the volume of the cone fill a cylinder with radius of 18 ft and a height of 25 ft ? Round your answer to the neares whole number. \qquad
\qquad
7. Find the volume of the figure
to the nearest tenth of a unit.
$3934.9 \mathrm{~cm}^{3}$

Sopright oby Holl, Rineharat and Winston

Reteach

6-7 Volume of Pyramids and Cones (continued)
Cone: solid figure with a circular base
This cone and cylinder
have congruent bases
and congruent heights.
Volume of Cone $=\frac{1}{3}$ Volume of Cylinder

$$
V=\frac{1}{3} B h
$$

Complete to find the volume of each cone.

radius $r=\frac{1}{2}$ diameter $=\underline{6} \mathrm{~cm}$
$V=\frac{1}{3} B h$
radius r
$V=\frac{1}{3} B h$
$V=\frac{1}{3}\left(\pi r^{2}\right) h$
$V=\frac{1}{3}\left(\pi \times 3^{2}\right) \times 10$
$V=\frac{1}{3}\left(\pi r^{2}\right) h$
$V=\frac{1}{3}(\underline{9 \pi}) \times 10$
$V=\frac{1}{3}\left(\pi \times \underline{6^{2}}\right) \times \underline{4}$
$V=\underline{3 \pi} \times 10$
$V=\frac{1}{3}(\underline{36 \pi}) \times 4$
$V=\underline{12 \pi} \times \underline{4}$
$V=\underline{30 \pi}$
$V=\underline{48 \pi}$
$V \approx 30 \times 3.14$
$V \approx 48 \times 3.14$
$V \approx 94.2 \mathrm{in}^{3}$
$V \approx 150.72 \mathrm{~cm}^{3}$

