Practice C

Volume of Pyramids and Cones

Find the volume of each figure to the nearest tenth of a unit.

1.

Find the missing measure to the nearest tenth of a unit.

4. rectangular pyramid: base length = 15 mbase width = ? height = 21 mvolume = 2415 m^3

5. triangular pyramid: base width = 8 cmbase height = 18 cm height = ? $volume = 624 cm^3$

- 6. A cone has diameter of 24 ft and height of 15 ft. How many times will the volume of the cone fill a cylinder with radius of 18 ft and a height of 25 ft? Round your answer to the nearest whole number.
- **7.** Find the volume of the figure to the nearest tenth of a unit.

8. Find the volume of the figure to the nearest tenth of a unit.

> 21 ft 26 ft 15 ft

Practice B 6-7 Volume of Pyramids and Cones

Find the volume of each figure to the nearest tenth of a unit.

324 ft³

2913.3 cm³

1728 ft³

7. The base of a regular pyramid has an area of 28 $\mbox{in}^2.$ 140 in³ The height of the pyramid is 15 in. Find the volume.

9454.2 cm³

780 m³

10. A funnel has a diameter of 9 in. and is 16 in. deep. What 339.1 in³ is the volume of the funnel to the nearest tenth of a unit?

11. A square pyramid has a height 18 cm and a base that measures 12 cm on each side. Explain whether tripling the height would triple the volume of the pyramid. Possible answer:

8. The radius of a cone is 19.4 cm and its height is 24 cm.

Find the volume of the cone to the nearest tenth.

is 13 m and the base sides are 12 m and 15 m.

9. Find the volume of a rectangular pyramid if the height

The volume of the original pyramid is 864 cm³. The volume of the new pyramid is 2592 cm³. Therefore, if the height of the pyramid were tripled, its volume would be tripled.

Copyright © by Holt, Rinehart and Winston

Holt Pre-Algebra

Practice C 6-7 Volume of Pyramids and Cones

Find the volume of each figure to the nearest tenth of a unit.

6191.0 cm³

12,160 in³

62,500 m³

Find the missing measure to the nearest tenth of a unit.

4. rectangular pyramid: base length = 15 m base width = ? height = 21 m volume = 2415 m^3

base width = 23 m

5. triangular pyramid: base width = 8 cm base height = 18 cm height = ? volume = 624 cm³

height = 26 cm

6. A cone has diameter of 24 ft and height of 15 ft. How many times will the volume of the cone fill a cylinder with radius of 18 ft and a height of 25 ft? Round your answer to the nearest

11 times

7. Find the volume of the figure to the nearest tenth of a unit.

3934.9 cm³

 ${\bf 8.}\ \mbox{Find}$ the volume of the figure to the nearest tenth of a unit.

23,314.5 ft³

Copyright © by Holt, Rinehart and Winston. All rights reserved.

70

Holt Pre-Algebra

Reteach

6-7 Volume of Pyramids and Cones

Pyramid: solid figure named for the shape of its base, which is a polygon; all other faces are triangles

Volume of Pyramid = $\frac{1}{3}$ Volume of Prism

 $V=\frac{1}{2}Bh$

6-7 Volume of Pyramids and Cones (continued)

Cone: solid figure with a circular base

Volume of Cone = $\frac{1}{3}$ Volume of Cylinder

 $V = \frac{1}{3} Bh$

Complete to find the volume of each pyramid.

- 1. square pyramid
- 2. rectangular pyramid

base is a square

 $V = \frac{1}{3} Bh$

 $V = \frac{1}{3}$ (area of square) × h

 $V = \frac{1}{3} \left(\underline{\mathbf{9}} \times \underline{\mathbf{9}} \right) \times \underline{\mathbf{7}}$

 $V = \frac{1}{3} (81) \times 7$

 $V = _{189}$ cm³

base is a rectangle

 $V = \frac{1}{3}Bh$

 $V = \frac{1}{3}$ (area of rectangle) $\times h$

 $V = \frac{1}{3} \left(\underline{8} \times \underline{6} \right) \times \underline{5}$

 $V = \frac{1}{3} \left(\underline{48} \right) \times \underline{5}$

 $V = _{80}$ in³

Reteach

This cone and cylinder have congruent bases and congruent heights.

Complete to find the volume of each cone.

radius r of base = 3 in.

 $V = \frac{1}{3} Bh$

 $V = \frac{1}{3} (\pi r^2) h$

 $V = \frac{1}{3} \left(\pi \times \underline{3^2} \right) \times \underline{10}$ $V = \frac{1}{3} \left(\frac{9\pi}{10} \right) \times \frac{10}{10}$

 $V = \underline{3\pi} \times \underline{10}$

 $V = 30\pi$ $V \approx _{30} \times 3.14$

 $V \approx$ _____ 94.2___ in³

radius $r = \frac{1}{2}$ diameter = ___6 cm

 $V = \frac{1}{3} (\pi r^2) h$ $V = \frac{1}{3} (\pi \times \underline{6^2}) \times \underline{4}$

 $V = \frac{1}{3} (\underline{36\pi}) \times \underline{4}$ $V = 12\pi \times 4$

 $V = 48\pi$

 $V \approx 48 \times 3.14$

 $V \approx 150.72$ cm³

Copyright © by Holt, Rinehart and Winston. All rights reserved. Holt Pre-Algebra

Holt Pre-Algebra