\qquad
\qquad

Worksheet 4-1: Algebraic Expressions

What is a constant?
A Constant is a number representing a quantity or value that does not change.
Examples:

What is a variable?
A variable is a letter or symbol representing a quantity or value that can vary or change.

Examples:

What is an algebraic expression?
Algebraic expression is a mathematical expression containing a variable.
Examples:

Forms of Algebraic Expressions:

1. One Variable Term : $2 x, \quad y$
2. Variable Term + Constant Term: $2 x+1, \quad 5+y$
3. Variable Term - Constant Term: $2 x-1, \quad 5-y$
4. Variable Term + Variable Term: $2 x+y, \quad 5 a+3 b$
5. Variable Term - Variable Term: $2 x-y, \quad 5 a-3 b$

Constant Term = A Number (A whole number, a decimal number or a fraction)

Forms of Constant Terms: (Can be Positive or Negative)

1. Whole Number Form: $x+1$
2. Decimal Form: $x-0.4$
3. Fraction Form: $y+\frac{1}{7}$
\qquad

$\underline{\text { Variable Term }=\text { Coefficient } \times \text { Variable }}$

The variable term has two parts: Numerical part (Coefficient) and Letter part (Variable)

"Coefficient" is the numerical part of the variable term.		"Variable" is the alphabetical letter part of the variable
term, including any exponent.		

** When the coefficient is 1 , we do not write 1 before the variable.

Forms of Variable Terms:

1. Product Form: $2 y, \quad x, \quad-7 a$
2. Quotient Form: $\quad \frac{x}{2}, \quad-0.79 y, \quad \frac{3}{4} a$
3. Exponent Form: $\quad 4 x^{2}, \quad 2 y^{3}, \quad-x^{2} y$

Practice:

1. For the following algebraic expressions, name the constant term, the variable term and the coefficient of the variable term.
(a) $4 x+1$
Constant term = 1
Variable term $=4 x$
Coefficient $=4$
(b) $y-12$

Constant term =
Variable term =
Coefficient $=$
(c) $-7 a+2.5$ Constant term $=$

Variable term =
Coefficient $=$
(d) $7.5 b^{2}-\frac{1}{7} \quad$ Constant term $=$

Variable term =
Coefficient $=$
(e) $\frac{2}{5}+\frac{7}{5} a \quad$ Constant term $=$

Variable term =
Coefficient $=$
(f) $-4-\frac{h^{3}}{2} \quad$ Constant term $=$

Variable term $=$
Coefficient $=$
(g) $-a^{3}+4 \quad$ Constant term $=$

Variable term =
Coefficient $=$
(h) $-3 x \quad$ Constant term $=\quad$ Variable term $=\quad$ Coefficient $=$
\qquad
Date: \qquad

Worksheet 4-2: Polynomials

Monomials

The basic building blocks for algebraic expressions are called the monomials.
Each term in an algebraic expression is a monomial.
A monomial is a number or a variable or the product of numbers and variables.
e.g., $5,13,800$ are monomials that are numbers.
e.g., t, a, x are monomials that are variables.
e.g., $2 r, 7 a, x y, t^{2}$, $8 s t$ are monomials that are products of numbers and variables.

Polynomials

A polynomial is a monomial or a sum of monomials.
A polynomial is formed by adding or subtracting monomials.
e.g., 9, $y, a+8, s-t, x^{2}-x+9, a^{3}+b^{2}+c-d$

Classifying Polynomials by Number of Terms

Polynomials are classified by the number of terms.
Monomials are polynomials that have only one term such as $x^{2}, 8,10 m, \frac{2 y^{3}}{3},-\frac{3}{4} a$
Binomials are polynomials that have two terms such as $2 x+4, a-2 b, s^{2}+s t$.

Trinomials are polynomials that have three terms such as $a^{3}+a^{2}+a, 3 x^{2}+x-2,-x+y-1$.
Polynomials that have four or more terms are just called polynomials such as $3 x^{3}+6 x^{2}-x+3$.

Name of Algebraic Expression	Number of Terms
	1
	2
4-Term Polynomial	3
	4
	5
	6

\qquad

Classifying Polynomials by Number of Terms

Recall: Monomials have ONE term. (Hint: Monopoly \rightarrow one owner)
Binomials have TWO terms.
Trinomials have THREE terms.
Polynomials have FOUR or MORE terms.
(Hint: Bicycles \rightarrow two wheels)
(Hint: Triangles \rightarrow three angles)
(Hint: Poly means many)

Note:

Monomials, binomials and trinomials are all polynomials. They are special names for polynomials with one to three terms. For polynomials with more than three terms (i.e. four or more), we don't have special names for them. They are just all called polynomials.

Practice:

Classify each algebraic expression as monomial, binomial, trinomial or polynomial.

1. $3 x+5$	\square Monomial $\quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square$ Polynomial
2. $8 y$	\square Monomial $\quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square$ Polynomial
3. $5 a^{2}+6 a-3$	\square Monomial $\quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square$ Polynomial
4. $-4 z^{2}+10 z$	\square Monomial $\quad \square$ Binomial $\quad \square$ Trinomial $\quad \square$ Polynomial
5. 100	\square Monomial $\quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square_{\text {Polynomial }}$
6. $x^{3}-9 x^{2}+5 x-7$	\square Monomial $\quad \square$ Binomial $\quad \square$ Trinomial $\quad \square$ Polynomial
7. $1-x^{2}$	\square Monomial $\quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square_{\text {Polynomial }}$
8. $4 s^{2}+2 s+8$	\square Monomial $\quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square_{\text {Polynomial }}$
9. $64 e$	\square Monomial $\quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square_{\text {Polynomial }}$
10. $y^{4}+y^{3}+y^{2}-y+1$	$\square_{\text {Monomial }} \quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square_{\text {Polynomial }}$
11. $p^{2}-q^{2}$	\square Monomial $\quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square$ Polynomial
12. $9 b$	\square Monomial $\quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square$ Polynomial
13. $-12 x^{2}+6 x-11$	\square Monomial $\quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square$ Polynomial
14. $2 a b-8$	\square Monomial $\quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square$ Polynomial
15. $m^{2}-49$	\square Monomial $\quad \square_{\text {Binomial }} \quad \square$ Trinomial $\quad \square_{\text {Polynomial }}$

Answers: 1. binomial; 2. monomial; 3. trinomial; 4. binomial; 5. monomial; 6. polynomial; 7. binomial;
8. trinomial; 9. monomial; 10. polynomial; 11. binomial; 12. monomial; 13. trinomial;
14. binomial; 15. binomial.
\qquad
\qquad

Worksheet 4-3: Like Terms vs. Unlike Terms

Like terms have the same variables and exponents.
e.g., $2 y$ and $8 y$ are like terms. $5 x^{2}$ and x^{2} are like terms.

Why?

Unlike terms have different variables or different exponents.
e.g.,
$2 x$ and $8 y$ are unlike terms.
$3 y^{2}$ and $3 y$ are unlike terms.
Why?

Practice:

1. Connect the like terms with a straight line using a ruler.
$4 x$
$8 x y z$
$23 y^{3} z$
23yz
$y^{3} z$
23
$4 x y z$
4
$8 x$
$y z$
2. Circle terms that are like $3 x$:
$\begin{array}{llllllllll}-5 x & 3 x^{2} & 3 & 4 x & -11 & -x & 3 y & -3 x & 7 x & x^{3}\end{array}$
3. Circle terms that are like $-2 x^{2}$:
$-5 x$

$$
3 x^{2}
$$

$-24 x$
$-9 x^{2}-x$
$2 y^{2}-3 x$
$7 x$
x^{3}
4. Provide each monomial with a like term and an unlike term.
(a) $9 a$
(b) $-b^{2}$
(c) $4 c^{3}$

